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Abstract: This work deals with model following by output feedback in hybrid systems subject to periodic state
jumps. In particular, the hybrid systems addressed exhibit a free jump dynamics and a to-be-controlled flow dy-
namics. Moreover, they may present a direct algebraic link from the control input to the regulated output — such
possible algebraic link is briefly called the control feedthrough. The problem of structural model following is in-
vestigated first. Namely, the structural aspect of model following consists in designing an output feedback hybrid
compensator such that the output of the compensated system perfectly replicates that of the reference model for all
the admissible input signals and all the admissible sequences of jump times, provided that the compensated system,
the reference model, and the feedback compensator have zero initial conditions. A necessary and sufficient condi-
tion for the existence of a solution to the structural problem is proven. Then, the problem of also ensuring global
asymptotic stability of the closed-loop compensated system, when the state is subject to periodic state jumps, is
tackled and a necessary and sufficient condition to accomplish also this goal, under suitable assumption, is shown.

Key–Words: Hybrid systems, Periodic state jumps, Global asymptotic stability, Model following, Geometric ap-
proach.

1 Introduction
Model following is a classic and extensively investi-
gated problem in system and control theory. At first,
it was stated for linear time-invariant systems and a
solution based on state feedback was presented [1].
Later, it was solved, still in the framework of linear
time-invariant systems, by means of an output dy-
namic feedback control scheme [2, 3]. Meanwhile,
the problem of model following was formulated and
solved for several other classes of dynamical sys-
tems, such as nonlinear systems [4,5], time-delay and
uncertain systems [6–8], large-scale systems [9, 10],
Markovian jump linear systems [11], switching sys-
tems [12–16]. It is also worth remarking that model
following is interesting not only from a methodolog-
ical point of view, but also from a practical point of
view, since it is related to a large number of applica-
tions developed during the last decades [17–26].

In this work, the problem of model following
is formulated and studied for a special class of hy-
brid dynamical systems — i.e., those featuring a
continuous-time linear behavior, interrupted by abrupt
state discontinuities occurring at precise time instants.
The dynamics governing the continuous-time behav-
ior is briefly referred to as the flow dynamics, while

the dynamics ruling the instantaneous changes of the
state is called the jump dynamics. More precisely,
this work considers hybrid systems whose jumps are
equally spaced in time and satisfy the constraint that
the number of jump times is finite in any finite time
interval, so as to leave possible chattering phenomena
out of consideration. Moreover, the hybrid systems
addressed present a free jump dynamics, while the
control input is applied to the continuous-time dynam-
ics and may also directly affect the to-be-controlled
output through an algebraic link, which is called the
control feedthrough.

Hybrid systems with state jumps, in general, have
recently attracted the attention and the research effort
of the scientific community, mainly for their capabil-
ity of modeling the main features of complex dynam-
ical systems, such as colliding mechanical systems,
multi-agent systems, electro-mechanical systems and
many others — see, e.g., [27] for a thorough report on
physical systems which can effectively be modelled
as hybrid systems with state jumps. Hence, some con-
trol problems have already been formalized and stud-
ied for these dynamical systems in some previous pa-
pers — this is the case, for instance, of output regula-
tion [28] and disturbance decoupling [29, 30].
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Consequently, the contribution of this work con-
sists in proposing a methodology for handling model
following in hybrid systems with periodic state jumps,
grounded on suitable extensions of well-settled previ-
ous results. More specifically, the possible presence
of the control feedthrough requires further elaborating
on recently-introduced geometric notions for hybrid
systems. For instance, the notion of hybrid controlled
invariance introduced in [28] needs to be extended to
what will be called output-nulling hybrid controlled
invariance, as will be shown in the paper. Moreover,
the treatment of the issue of global asymptotic stabil-
ity requires new notions to be introduced, like, e.g.,
that of minimum-phase hybrid system with periodic
state jumps.

Indeed, the methods devised in this work in or-
der to handle hybrid systems with state jumps ensue
from the geometric approach to linear control the-
ory [31, 32]. Although the geometric approach is a
methodology established in the late sixties and orig-
inally aimed at linear time-invariant systems, it has
recently proven to be very flexible and powerful in
dealing with different kinds of hybrid dynamical sys-
tems. In particular, it has led to the solution of some
basic control problems stated for switching systems,
like signal decoupling [33, 34, 37–43] and output reg-
ulation [35, 36], in addition to the already mentioned
model following [12–16].

On a last introductory note, it is worth mention-
ing that a typical feature of the geometric approach
is distinguishing and separately treating the structural
aspects and the stability aspects of any control prob-
lem, independently of the typology of the dynamical
systems addressed. In the specific case dealt with
herein, the structural aspects of model following are
not affected by the special characteristics of the hybrid
time domain. Namely, the fact that the jump times
be equally space in time or not has no influence on
solvability of the mere problem of making the differ-
ence between the output of the compensated system
and that of the reference model to be equal to zero
at any time (provided that the number of jump times
be finite in any finite time interval). Instead, the fact
that the jump times are equally spaced has a relevant
impact on the stability issues.

For this reason, the structural model matching
problem will be discussed and solved first, with refer-
ence to the more general case where the jump times
are not necessarily uniformly spaced in time. In-
stead, the more exhaustive version of the model fol-
lowing problem, which also takes into account the re-
quirement that the closed-loop compensated system
be globally asymptotically stable, will be considered
by focusing on the case of periodic jumps.

2 Notation and Preliminaries

The purpose of this section is twofold. The first aim is
to introduce the notation that will be used throughout
this work. The second goal is to review the basic ge-
ometric notions, referred to hybrid systems with state
jumps, needed for the methodological developments
presented in the paper.

The symbols R, R+, Z+
0 , and Z

+ stand for the
sets of real numbers, nonnegative real numbers, non-
negative integer numbers, and positive integer num-
bers, respectively. Matrices and linear maps are de-
noted by slanted upper-case letters, like A. The image
and the kernel of A are denoted by ImA and KerA,
respectively. The transpose of A is denoted by A�.
The inverse of a nonsingular square matrix A is de-
noted by A−1. Vector spaces and subspaces are de-
noted by calligraphic letters, like V . The symbol I
denotes an identity matrix of appropriate dimensions.

As will be shown in the following sections, a key
role in the solution of the model following problem
is played by the solution of a problem of disturbance
decoupling for a suitably modified scheme. The wide
literature available on decoupling and noninteraction
shows that one of the most powerful tools to success-
fully master these problems is the geometric approach
[31, 32]. For this reason, during the last decades,
the fundamental concepts formerly established to deal
with linear time-invariant systems have been extended
to more complex dynamical systems.

More specifically, concerning hybrid systems
with state jumps, some basic ideas, such as invariance
and controlled invariance, have been generalized so as
to adapt to this kind of dynamical systems in some ear-
lier articles [28–30]. However, in this work, the con-
sidered hybrid systems may exhibit a direct algebraic
link from the control input to the output. Hence, the
notion of hybrid controlled invariance must be com-
pleted by the novel concept of output-nulling hybrid
controlled invariance.

The definitions of hybrid invariant subspace, hy-
brid controlled invariant subspace and output-nulling
hybrid controlled invariant subspace are given with
reference to a hybrid system with state jumps that will
be denoted by Σ. In order to formalize the mathemat-
ical descripton of Σ, the hybrid time domain must be
first introduced through the following notation. The
symbol T denotes a finite or countably infinite or-
dered set {t0, t1, . . .} of strictly increasing elements
of R+. The symbol tf stands for the last element of T
when T has a finite cardinality. The set T is assumed
to exhibit no accumulation points. The symbol T de-
notes the set of all T meeting the constraint mentioned
above. The nonnegative real axis without the elements
of T is denoted by R

+ \ T .

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Elena Zattoni

E-ISSN: 2224-266X 206 Volume 15, 2016



Hence, the hybrid system with state jumps Σ is
described by

Σ≡⎧⎨
⎩

ẋ(t) = Ax(t) +B u(t) +H h(t), t∈R
+ \ T ,

x(tk) = Gx(t−k ), tk ∈T ,
e(t) = E x(t) +Du(t), t∈R

+,

where x∈X =R
n is the state, u∈R

p is the control
input, h∈R

q is the disturbance input, and e∈R
q is

the to-be-controlled output.
The set of the admissible control input func-

tions u(t), with t∈R
+, is defined as the set of all

piecewise-continuous functions with values in R
p.

The set of the admissible disturbance input func-
tions h(t), with t∈R

+, is defined as the set of all
piecewise-continuous functions with values in R

q.
The so-called flow dynamics is ruled by the differ-
ential state equation. Meanwhile, the algebraic state
equation governs the so-called jump dynamics. Thus,
according to the hybrid structure of Σ, the state mo-
tion x(t) in [0, t0) is the solution of the differential
equation, with given initial state x(0)=x0 and in-
put functions u(t) and h(t), with t∈ [0, t0). The
state x(tk), with tk ∈T , is the image through G of
x(t−k )= limε→0+ x(tk − ε). The state motion x(t) in
[tk, tk+1), with tk, tk+1 ∈T , is the solution of the dif-
ferential equation, given the initial state x(tk) and the
input functions u(t) and h(t), with t∈ [tk, tk+1).

From now on, the symbol H stands to qual-
ify hybrid invariance or, respectively, hybrid con-
trolled invariance. The symbol B is the short no-
tation for ImB, while H stands for ImH . A sub-
space W⊆X is said to be an H -invariant subspace
if AW⊆W and GW ⊆W . A subspace W⊆X
is said to be an H -controlled invariant subspace if
AW⊆W +B and GW⊆W . Furthermore, it can
be shown that a subspace W⊆X , with a basis ma-
trix W , is an H -controlled invariant subspace if and
only there exist matrices XA, XG, and U such that
AW =W XA+B U and GW =W XG. Hence, the
definition of output-nulling H -controlled invariant
subspace is introduced as follows.

Definition 1 A subspace W⊆X , with a basis matrix
W , is said to be an output-nulling H -controlled in-
variant subspace if there exist matrices XA, XG, and
U such that AW =W XA+B U , GW =W XG,
and EW =DU .

A relevant characterization of the geometric concept
of output-nulling H -controlled invariant subspace is
expressed by the following statement, whose proof di-
rectly ensues from the properties enjoyed by simulta-
neous invariant and output-nulling controlled invari-
ant subspaces in the linear time-invariant case.

Proposition 2 A subspace W⊆X is an output-
nulling H -controlled invariant subspace if and
only if there exists a linear map K such that
(A+BK)W ⊆W and W⊆Ker (E+DK) hold
along with GW⊆W .

Any linear map K satisfying the conditions of Propo-
sition 2 is said to be a friend of the output-nulling H -
controlled invariant subspace W .

As can be shown by simple algebraic arguments,
the set of all output-nulling H -controlled invariant
subspaces is an upper semilattice with respect to the
sum and the inclusion of subspaces. The maximum
of the set of all output-nulling H -controlled invariant
subspaces is henceforth denoted by W∗

H .

3 Structural Model Following by
Output Feedback in Hybrid Sys-
tems: Problem Statement

The hybrid system with state jumps ΣP is defined by

ΣP ≡⎧⎨
⎩

ẋP (t) = AP xP (t) +BP u(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

eP (t) = EP xP (t) +DP u(t), t∈R
+,

where xP ∈XP =R
nP is the state, u∈R

p is the con-
trol input, and eP ∈R

q is the output, with p, q≤nP .
AP , BP , GP , EP , and DP are constant real matrices
of appropriate dimensions. The algebraic link from
the control input to the output, established by the ma-
trix DP , is referred to as the control feedthrough. The
rank of the matrices

[
BP

DP

]
,

[
EP DP

]
,

is assumed to be full. The set of the admissible
control input functions u(t), with t∈R

+, is defined
as the set of all piecewise-continuous functions with
values in R

p. According to the hybrid structure of
ΣP , the state motion xP (t) in [0, t0) is the solution
of the differential equation, with given initial state
xP (0)=xP,0 and input function u(t), with t∈ [0, t0).
The state xP (tk), with tk ∈T , is the image through
GP of xP (t

−
k )= limε→0+ xP (tk − ε). The state mo-

tion xP (t) in [tk, tk+1), with tk, tk+1 ∈T , is the
solution of the differential equation, given the ini-
tial state xP (tk) and the input function u(t), with
t∈ [tk, tk+1).

The hybrid reference model with state jumps ΣR
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Figure 1: Model Following by Output Feedback

is defined by

ΣR ≡⎧⎨
⎩

ẋR(t) = AR xR(t) +BR d(t), t∈R
+ \ T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

eR(t) = ER xR(t), t∈R
+,

where xR ∈R
nR is the state, d∈R

q is the input, and
eR ∈R

q is the output. The set of the admissible input
functions d(t), with t∈R

+, is defined as the set of all
piecewise-continuous functions with values in R

q.
Hence, the problem of structural model following

by output feedback in hybrid systems with state jumps
is stated as follows.

Problem 3 (Structural Model Following by Out-
put Feedback in Hybrid Systems with State
Jumps) Let the hybrid system with state jumps ΣP

and the hybrid reference model with state jumps ΣR

be given. Find a hybrid compensator with state jumps
ΣC , defined by

ΣC ≡⎧⎨
⎩

ẋC(t) = AC xC(t) +BC h(t), t∈R
+ \ T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

u(t) = CC xC(t), t∈R
+,

where h(t)= d(t)− eP (t), such that the closed-loop
hybrid system with state jumps ΣO, defined by

ΣO ≡⎧⎨
⎩

ẋO(t) = AO xO(t) +DO d(t), t∈R
+ \ T ,

xO(tk) = GO xO(t
−
k ), tk ∈T ,

eP (t) = EO xO(t), t∈R
+,

where

AO =

[
AP BP CC

−BC EP AC −BC DP CC

]
,

DO =

[
0
BC

]
,

GO =

[
GP 0
0 GC

]
,

EO =
[
EP DP CC

]
,

satisfies the requirement that the output eP (t) is equal
to the reference model output eR(t), for all t∈R

+,
when the respective initial states are zero, for all the
admissible input functions d(t), with t∈R

+, and all
the admissible sequences of jump times T ∈T .

A block diagram illustrating the system intercon-
nection referred to in Problem 3 is presented in Fig. 1.

4 Structural Feedforward Distur-
bance Decoupling for the Hybrid
Extended System: Problem State-
ment

As will be shown later on, the solution to the prob-
lem stated in Section 3 can be achieved by solving the
problem which is the object of this section: namely,
a problem of structural disturbance decoupling by dy-
namic feedforward, stated for a suitably-defined hy-
brid system with state jumps.

This newly-defined hybrid system, henceforth
called the extended hybrid system with state jumps,
is the output-difference connection between the given
hybrid plant ΣP and a modified hybrid reference
model, henceforth denoted by Σ+

R. In particular, the
hybrid reference model Σ+

R is derived from the orig-
inal model ΣR by closing a positive unit feedback of
the output on the flow dynamics. Thus, Σ+

R is ruled by

Σ+
R ≡⎧⎪⎪⎨
⎪⎪⎩

ẋR(t) = (AR +BR ER)xR(t) +BR h(t),
t∈R

+ \ T ,
xR(tk) = GR xR(t

−
k ), tk ∈T ,

eR(t) = ER xR(t), t∈R
+.

The set of the admissible input functions to the mod-
ified reference model Σ+

R is defined as the set of
all piecewise-continuous functions h(t), with t∈R

+,
picking their values in R

q.
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Figure 2: Structural Feedforward Disturbance Decoupling

Consequently, the hybrid extended system with
state jumps — denoted by Σ — is defined as the con-
nection of the given hybrid system ΣP with the modi-
fied hybrid reference model Σ+

R, such that the control
input, the disturbance input, and the output of Σ re-
spectively are the control input of ΣP , the input of
Σ+
R, and the difference between the outputs of ΣP and

Σ+
R. Thus, Σ is described by

Σ≡⎧⎨
⎩

ẋ(t) = Ax(t) +B u(t) +H h(t), t∈R
+ \ T ,

x(tk) = Gx(t−k ), tk ∈T ,
e(t) = E x(t) +Du(t), t∈R

+,

where

A =

[
AP 0
0 AR +BR ER

]
,

B =

[
BP

0

]
, H =

[
0
BR

]
,

G =

[
GP 0
0 GR

]
,

E =
[
EP −ER

]
, D = DP .

The state space of Σ will be denoted by X : i.e.,
X =R

n, where n=nP +nR.
Hence, the structural disturbance decoupling

problem by dynamic feedforward, for the hybrid ex-
tended system with state jumps Σ, can be stated as
follows.

Problem 4 (Structural Feedforward Disturbance
Decoupling for the Extended Hybrid System with
State Jumps) Let the hybrid extended system with
state jumps Σ be given. Find a hybrid compensator
with state jumps ΣC such that the compensated hy-
brid system

Σ̄≡

⎧⎨
⎩

˙̄x(t) = Ā x̄(t) + H̄ h(t), t∈R
+ \ T ,

x̄(tk) = Ḡ x̄(t−k ), tk ∈T ,
e(t) = C̄ x̄(t), t∈R

+,

where

Ā =

[
A BCC

0 AC

]
, H̄ =

[
H
BC

]
,

Ḡ =

[
G 0
0 GC

]
,

C̄ =
[
E DCC

]
,

satisfies the requirement that the output e(t) is zero,
for all t∈R

+, when the initial state is zero, for all the
admissible input functions h(t), with t∈R

+, and all
the admissible sequences of jump times T ∈T .

Figure 2 shows a block diagram of the system in-
terconnection dealt with in Problem 4.

5 Structural Feedforward Distur-
bance Decoupling for the Hybrid
Extended System: Problem Solu-
tion

Solvability of Problem 4 can be completely character-
ized by a necessary and sufficient condition exploit-
ing the geometric notions introduced in Section 2. As
will be shown in this section, such condition can be
expressed in coordinate-free terms, since it amounts
to an inclusion of subspaces. Nevertheless, since
the proof of sufficiency is constructive — namely, it
includes the synthesis of the compensator — some
preliminary remarks are made with the purpose of
expressing such condition with reference to suitably
chosen coordinates.

To begin with, it is worth highlighting that the lin-
ear map A+BK, where K is a friend of the maximal
output-nulling H -controlled invariant subspace W∗

H
of the hybrid extended system Σ, is represented by a
matrix with a typical upper block-triangular structure,
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when a suitable similarity transformation is applied to
the state space. In particular, let S be a change of ba-
sis defined by S= [S1 S2 ], with ImS1=W∗

H . Then,
in the new coordinates,

A′ +B′K ′ = S−1 (A+BK)S =[
A′

11 +B′
1K

′
1 A′

12 +B′
1K

′
2

0 A′
22 +B′

2K
′
2

]
, (1)

where the structural zero in the lower left corner —
i.e.,

A′
21 +B′

2K
′
1 = 0, (2)

is due to (A+BK)-invariance of W∗
H . Similarly,

the linear map G is represented by

G′ = S−1GS =

[
G′

11 G′
12

0 G′
22

]
, (3)

in the same coordinates, where the structural zero in
the lower left corner is due to G-invariance of W∗

H .
Moreover, with respect to the same coordinates, the
linear map E+DK, where K is the friend of W∗

H
considered, is represented by a matrix with a structural
zero in the first block of columns: i.e.,

E′ +D′K ′ = (E +DK)S

=
[
0 E′

2 +DK ′
2

]
, (4)

where the structural zero — i.e.,

E′
1 +DK ′

1 = 0, (5)

is due to W∗
H ⊆Ker (E+DK).

Furthermore, the subspace inclusion that will be
proven to be equivalent to solvability of Problem 4 can
be conveniently recast in a coordinate-dependent form
with reference to the basis considered above. This is
to say that

H ⊆ W∗
H (6)

is equivalent to

H ′ = S−1H =

[
H ′

1

0

]
. (7)

In fact, the structural zero in H ′ means that a basis ma-
trix of H is a linear combination of the column vectors
of the basis matrix S1 of W∗

H .
With these premises, the necessary and sufficient

condition for Problem 4 to be solvable is formulated
as in the following theorem.

Theorem 5 Let the hybrid extended system with state
jumps Σ be given. Problem 4 is solvable if and only if
(6) holds.

Proof: If. Let (6) hold. Let K be a friend of
W∗

H . Hence, (1), (3), (4), and (7) hold with respect to
the specified coordinates. Let

A′
C = A′

11+B′
1K

′
1,

B′
C = H ′

1,

G′
C = G′

11,

C ′
C = K ′

1

be the matrices of the hybrid regulator ΣC with re-
spect to such coordinates. Then, it will be shown that
ΣC , with zero initial state, solves Problem 4. To this
purpose, it is worth observing that the cascade, de-
noted by Σ̄ in Problem 4, of the hybrid compensator
ΣC (thus determined) with the hybrid extended sys-
tem Σ is ruled by (8), where the state of Σ, in the new

coordinates, is partitioned as
[
x�1 x�2

]�
according to

(1), (3), (4), and (7). By setting ζ(t)=x1(t)−xC(t),
with t∈R

+, the system Σ̄ can be recast as in (9),
where (2) and (5) have been taken into account.
Hence, the assumption that the initial state is zero im-
plies ζ(t)= 0 and x2(t)= 0, for all t∈R

+, which also
implies e(t)= 0, for all t∈R

+, for all the admissible
input functions h(t), with t∈R

+, and all the admissi-
ble jump time sequences T ∈T .

Only if. If (6) does not hold, no other output-
nulling H -controlled invariant subspace containing
H exists, since the set of all output-nulling H -
controlled invariant subspaces is an upper semilattice
and W∗

H is the maximum. ��

6 Structural Model Following by
Output Feedback in Hybrid Sys-
tems: Problem Solution

This section is aimed at showing that the problem of
structural disturbance decoupling by dynamic feedfor-
ward respectively stated and solved for the hybrid ex-
tended system with state jumps in Sections 4 and 5 is
equivalent to the problem of structural model follow-
ing by output feedback stated in Section 3. This fact
will be proven by demonstrating that a hybrid com-
pensator with state jumps solves one of these prob-
lems if and only if it solves the other one. This result
is formalized in the theorem below.

Theorem 6 A hybrid compensator with state jumps
ΣC solves Problem 4 if and only if it solves Problem 3.

Proof: If. Let the hybrid compensator ΣC solve
Problem 3. Consequently, the overall hybrid system
with output feedback — from now called Σ̄′ — is
ruled by (10). It is worthwhile observing that, since
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Σ̄ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = A′
11 x1(t) +A′

12 x2(t) +B′
1K

′
1 xC(t) +H ′

1 h(t), t∈R
+ \ T ,

ẋ2(t) = A′
21 x1(t) +A′

22 x2(t) +B′
2K

′
1 xC(t), t∈R

+ \ T ,
ẋC(t) = (A′

11 +B′
1K

′
1)xC(t) +H ′

1 h(t), t∈R
+ \ T ,

x1(tk) = G′
11 x1(t

−
k ) +G′

12 x2(t
−
k ), tk ∈T ,

x2(tk) = G′
22 x2(t

−
k ), tk ∈T ,

xC(tk) = G′
11 xC(t

−
k ), tk ∈T ,

e(t) = E′
1 x1(t) + E′

2 x2(t) +DK ′
1 xC(t), t∈R

+,

(8)

Σ̄ ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇(t) = A′
11 ζ(t) +A′

12 x2(t), t∈R
+ \ T ,

ẋ2(t) = A′
21 ζ(t) +A′

22 x2(t), t∈R
+ \ T ,

ẋC(t) = (A′
11 +B′

1K
′
1)xC(t) +H ′

1 h(t), t∈R
+ \ T ,

ζ(tk) = G′
11 ζ(t

−
k ) +G′

12 x2(t
−
k ), tk ∈T ,

x2(tk) = G′
22 x2(t

−
k ), tk ∈T ,

xC(tk) = G′
11 xC(t

−
k ), tk ∈T ,

e(t) = E′
1 ζ(t) + E′

2 x2(t), t∈R
+,

(9)

ΣC solves Problem 3, under the assumption that the
initial state is the origin, the output of Σ̄′ satisfies the
condition that e(t)= 0, for all t∈R

+, for all the ad-
missible input functions d(t), with t∈R

+. Therefore,
one can replace eP (t)=EP xP (t)+DP CC xC(t)
with eR(t)=ER xR(t) in the state equations of Σ̄′.
Consequently, the new system Σ̄′′ is described by
(11). Further, since e(t)= 0 for all t∈R

+, for
all the admissible d(t), with t∈R

+, such condi-
tion holds when d(t)=h(t)+ER xR(t), where h(t),
with t∈R

+, stands for any admissible input func-
tion. Then, the system which turns out is the hybrid
system Σ̄ considered in Problem 4, as is proven by
(12), which derive from Σ̄′′ with the abovementioned
replacement. The equations of Σ̄, which hold with
e(t)= 0 for all t∈R

+, for all the admissible h(t),
with t∈R

+, show that the hybrid compensator ΣC

also solves Problem 4: i.e., the problem of decou-
pling the signal h(t), with t∈R

+, in the hybrid ex-
tended system Σ, including the modified hybrid refer-
ence model Σ+

R.
Only if. Let the hybrid compensator with state

jumps ΣC solve Problem 4. Therefore, to show that
ΣC also solves Problem 3, the reasoning presented in
the if-part of the proof can be pursued backward —
namely, starting from Σ̄ and ending to Σ̄′. ��

7 Model Following with Global
Asymptotic Stability in Hybrid
Systems with Periodic State Jumps

The discussion developed so far has been focused on
structural model following: namely, the problem of
finding a hybrid output feedback compensator such

that the respective forced responses of the closed-loop
compensated hybrid system and of the hybrid refer-
ence model are equal for all the admissible input sig-
nals and all the admissible sequences of jump times.

The aim of this section is to investigate a more
complete version of model following by output feed-
back in hybrid systems with state jumps: namely, a
problem formulation where, under suitable assump-
tions on the given hybrid plant and the given hy-
brid reference model, the closed-loop hybrid compen-
sated system is globally asymptotically stable for all
the sequences of jump times belonging to a properly-
defined set. In particular, the issue of global asymp-
totic stability of the closed-loop hybrid system is
herein investigated by focusing on the case of hybrid
systems with periodic state jumps. This is to say that
the jump times of the sequence T are multiple of a
given positive real constant τ .

Hence, the plant ΣP can be more conveniently
described as

ΣP ≡⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP u(t),
t∈ [k τ, (k + 1) τ), k ∈ Z

+
0 ,

xP (t) = GP xP (t
−),

t= k τ, k ∈ Z
+,

eP (t) = EP xP (t) +DP u(t), t∈R
+.

Likewise, the hybrid reference model is described by

ΣR ≡⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋR(t) = AR xR(t) +BR d(t),
t∈ [k τ, (k + 1) τ), k ∈ Z

+
0 ,

xR(t) = GR xR(t
−),

t= k τ, k ∈ Z
+,

eR(t) = ER xR(t), t∈R
+.
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Σ̄′≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP CC xC(t), t∈R
+ \ T ,

ẋC(t) = −BC EP xP (t) + (AC −BC DP CC)xC(t) +BC d(t), t∈R
+ \ T ,

ẋR(t) = AR xR(t) +BR d(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

e(t) = EP xP (t) +DP CC xC(t)− ER xR(t), t∈R
+.

(10)

Σ̄′′≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP CC xC(t), t∈R
+ \ T ,

ẋC(t) = AC xC(t)−BC ER xR(t) +BC d(t), t∈R
+ \ T ,

ẋR(t) = AR xR(t) +BR d(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

e(t) = EP xP (t) +DP CC xC(t)− ER xR(t), t∈R
+.

(11)

In order to state the problem of model follow-
ing with global asymptotic stability for hybrid systems
with periodic state jumps, it is convenient to denote by
Tτm the set of all periodic sequences of jump times
T = {τ, 2 τ, . . .} such that the length of the time in-
terval between two consecutive jump times is greater
than or equal to τm, with τm denoting a given positive
real constant: namely, τ ≥ τm. Hence, it is assumed
that both the hybrid plant ΣP and the hybrid refer-
ence model ΣR are globally asymptotically stable for
all the jump time sequences belonging to Tτm . This
concept will be briefly referred to as global asymp-
totic stability over Tτm of ΣP and ΣR, respectively.
It is worth noting that there is no loss of generality in
assuming that the hybrid plant ΣP and the hybrid ref-
erence model ΣR are globally asymptotically stable
over the same set Tτm of periodic sequences of jump
times. Namely, if ΣP and ΣR are known to be glob-
ally asymptotically stable over Tτ ′m and Tτ ′′m , respec-
tively, the constant τm can be assumed as the greater
between τ ′m and τ ′′m.

It is also worth noting that the hybrid plant ΣP ,
subject to a periodic sequence of state jumps T , with
period τ , is globally asymptotically stable if and only
if the state transition matrix over one period, i.e.,

Φp(τ) = GP eAP τ ,

is Schur stable, that is to say that all its eigenvalues lie
inside the open unit disc of the complex plane. This
statement, which is given with reference to ΣP for the
sake of immediacy, holds true for any hybrid system
with periodic state jumps.

Hence, the problem of output feedback model fol-
lowing, with global asymptotic stability over Tτ , in
hybrid systems with state jumps can be stated as fol-
lows.

Problem 7 (Model Following by Output Feedback
with Global Asymptotic Stability in Hybrid Sys-
tems with State Jumps) Let the hybrid system with
state jumps ΣP and the hybrid reference model ΣR be
subject to periodic sequences of jump times with the
same given period τ ≥ τm, where τm denotes a given
positive real constant. Let ΣP and ΣR be globally
asymptotically stable over Tτm . Find a hybrid com-
pensator with periodic state jumps ΣC , defined by

ΣC ≡⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋC(t) = AC xC(t) +BC h(t),
t∈ [k τ, (k + 1) τ), k ∈ Z

+
0 ,

xC(t) = GC xC(t
−),

t= k τ, k ∈ Z
+,

u(t) = CC xC(t), t∈R
+,

where h(t)= d(t)− eP (t), such that the closed-loop
hybrid system with state jumps ΣO, defined by

ΣO ≡⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋO(t) = AO xO(t) +DO d(t),
t∈ [k τ, (k + 1) τ), k ∈ Z

+
0 ,

xO(t) = GO xO(t
−),

t= k τ, k ∈ Z
+,

eP (t) = EO xO(t), t∈R
+,

where

AO =

[
AP BP CC

−BC EP AC −BC DP CC

]
,

DO =

[
0
BC

]
,

GO =

[
GP 0
0 GC

]
,

EO =
[
EP DP CC

]
,
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Σ̄≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋP (t) = AP xP (t) +BP CC xC(t), t∈R
+ \ T ,

ẋC(t) = AC xC(t) +BC h(t), t∈R
+ \ T ,

ẋR(t) = (AR +BR ER)xR(t) +BR h(t), t∈R
+ \ T ,

xP (tk) = GP xP (t
−
k ), tk ∈T ,

xC(tk) = GC xC(t
−
k ), tk ∈T ,

xR(tk) = GR xR(t
−
k ), tk ∈T ,

e(t) = EP xP (t) +DP CC xC(t)− ER xR(t), t∈R
+.

(12)

satisfies the following requirements:

R 1. the output eP (t) is equal to the reference model
output eR(t), for all t∈R

+, when the respec-
tive initial states of the involved systems are zero,
for all the admissible input functions d(t), with
t∈R

+, and the given sequence of jump times
T ∈Tτm;

R 2. the closed-loop hybrid system ΣO is globally
asymptotically stable for the given sequence of
jump times T ∈Tτm .

In order to state a necessary and sufficient con-
dition for Problem 7 to be solvable, the definition
of minimum-phase hybrid system with periodic state
jumps is introduced as follows. The hybrid plant
ΣP , subject to a periodic sequence of state jumps T ,
with a given period τ , is said to be minimum-phase
if its hybrid zero dynamics is globally asymptotically
stable — namely, if the hybrid restricted dynamics
GP e(AP+BP KP ) τ |W∗

P
, where W∗

P denotes the max-
imal output nulling H -controlled invariant subspace
of ΣP , is Schur stabilizable by a suitable choice of
KP .

Hence, the following necessary and sufficient
condition for solvability of Problem 7 is established.

Theorem 8 Let the hybrid plant ΣP and the hybrid
reference model ΣR, subject to the sequence of pe-
riodic state jumps defined by T be given. Let ΣP

and ΣR be globally asymptotically stable over Tτ ,
with the period τ given. Let the the hybrid restricted
dynamics GP e(AP+BP KP ) τ |W∗

P
, where W∗

P denotes
the maximal output nulling H -controlled invariant
subspace of ΣP , be Schur stable for a suitable choice
of KP . Then, Problem 7 is solvable if and only if (6)
holds, where the subspaces H and W∗

H refer to the
hybrid extended system subject to periodic state jumps

Σ≡⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +B u(t) +H h(t),
t∈ [k τ, (k + 1) τ), k ∈ Z

+
0 ,

x(t) = Gx(t−),
t= k τ, k ∈ Z

+,
e(t) = E x(t) +Du(t), t∈R

+.

Proof: First, note that (6) is a necessary and suf-
ficient condition to achieve structural model following
by output feedback, by virtue of Theorem 6. Hence, a
feedback compensator ΣC , with periodic state jumps,
achieving structural model following can be designed
as shown in the if-part of the proof of Theorem 6.
Then, in order to show that the same compensator
ΣC also accomplishes global asymptotic stability of
the closed-loop system ΣO for the given periodic se-
quence T , it suffices to notice that global asymp-
totic stability of the reachable and observable modes
is guaranteed by the assumption of global asymptotic
stability of the hybrid reference model ΣR and that
inner unstable dynamics cancellations are prevented
by the assumption that ΣP is minimum-phase for the
given sequence T . ��

8 Conclusions

This work has been focused on model following by
output feedback in hybrid systems with state jumps.
First, a necessary and sufficient condition to achieve
structural model following between a given plant and
a given reference model, by means of an output feed-
back compensator, has been shown. In dealing with
the structural aspects of the problem, no special as-
sumptions have been made on the nature of the se-
quence of jump times, apart from that of considering a
finite number of jump times in any finite time interval.
Then, a necessary and sufficient condition for achiev-
ing model following with global asymptotic stability
of the closed-loop hybrid system has been derived, by
focusing on the case of hybrid systems subject to pe-
riodic state jumps.
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Jämsä-Jounela. A performance optimization al-
gorithm for controller reconfiguration in fault
tolerant distributed model predictive control.
Journal of Process Control, 34:56–69, 2015.
DOI:10.1016/j.jprocont.2015.07.006.

[26] C. Adams, J. Potter, and W. Singhose. Input-shaping
and model-following control of a helicopter carrying
a suspended load. Journal of Guidance, Control, and
Dynamics, 38(1):94–105, 2015.

[27] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid
Dynamical Systems: Modeling, Stability, and Robust-
ness. Princeton University Press, Princeton, New Jer-
sey, 2012.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Elena Zattoni

E-ISSN: 2224-266X 214 Volume 15, 2016



[28] E. Zattoni, A. M. Perdon, and G. Conte. Output
regulation by error dynamic feedback in linear time-
invariant hybrid dynamical systems. In 14th Euro-
pean Control Conference, pages 1438–1443, Linz,
Austria, July 15–17, 2015.

[29] G. Conte, A. M. Perdon, and E. Zattoni. The dis-
turbance decoupling problem for jumping hybrid sys-
tems. In 54th IEEE Conference on Decision and
Control, pages 1589–1594, Osaka, Japan, Decem-
ber 15–18, 2015.

[30] A. M. Perdon, E. Zattoni, and G. Conte. Distur-
bance decoupling with stability for linear impulsive
systems. In 6th IFAC Symposium on System Structure
and Control, volume 49(9) of IFAC-PapersOnLine,
pages 1–6, Istanbul, Turkey, June 22–24 2016.

[31] W. M. Wonham. Linear Multivariable Control: A
Geometric Approach. Springer-Verlag, New York, 3
edition, 1985.

[32] G. Basile and G. Marro. Controlled and Conditioned
Invariants in Linear System Theory. Prentice Hall,
Englewood Cliffs, NJ, 1992.

[33] E. Zattoni. Dynamic feedforward compensation of
measurable signals in discrete-time linear switching
systems. In 2013 American Control Conference,
pages 848–853, Washington DC, USA, June 17–19,
2013.

[34] E. Zattoni and G. Marro. Measurable disturbance
rejection with quadratic stability in continuous-time
linear switching systems. In European Control Con-
ference 2013, pages 2157–2162, Zürich, Switzerland,
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